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Abstract

Machine learning (ML) methods have become more relevant in materials sci-
ence over the last decade. They are now well recognized as effective methods
for approximating extremely complex functions. Machine learning interaction
potentials (MLIP) offer computation speeds close to empirical potentials, while
having an accuracy close to the method used in training. In this project, the ef-
fects of the neural network (NN) architecture on its accuracy of prediction were
studied. The machine learning framework n2p2 was used for the creation of po-
tentials for gold systems from a Density-functional theory (DFT) database. The
potential was then used together with Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) to calculate the surface energies and mechanical
properties. These calculations were compared with values from DFT calcula-
tions as a measure of the agreement with DFT methods. Potentials were then
trained using slightly different setup parameters in order to study their effect on
the accuracy of the potential. The transferability of the potential was also inves-
tigated by training potentials with incomplete databases. It was found that the
machine learning potential could be in good agreement with the DFT values,
provided the setup parameters are properly chosen. Moreover, the potential
showed good transferability, which is an important quality for the application
of this potential in simulations. The results revealed that machine learning is
not a one-size-fits-all solution, and that it still relies substantially on the setup
parameters to properly minimize the errors with respect to the database.



1 Introduction

The simulation of complex systems of atoms and molecules is important in the
fields of materials physics, chemistry, biology, among others. By performing
numerical simulations, we are able to understand more in depth the molecular
mechanisms responsible for macroscopic effects. Simulations are also helpful for
studying systems for which it is too difficult or too expensive to perform exper-
iments. In cases where an experiment is possible, they can indicate expected
results, which can be helpful for preparing the experiment and the measurements
that have to be made.

Material modelling at the atomistic level is concerned with the calculation of
the potential energy surface (PES). The PES is a multidimensional function that
provides the potential energy of a system as a function of the atomic positions
[1], which is key to accessing the properties of a system. In materials science
there are two main approaches to approximating the PES. On the one hand,
electron-based methods are used for calculations at the electronic scales, they
rely on quantum mechanics and are the most accurate models. However, they
are also computationally expensive. On the other hand, force field methods
are much faster, allowing for the simulation of larger systems, even reaching
biological applications. But, they rely on empirical models, thus leading to a
decrease in accuracy when compared to electron-based methods. In this project,
machine learning is studied as a multi-scale method to bridge the electron-based
and the force field methods.

1.1 Electronic-Based Methods

These methods make use of electronic Hamiltonians to evaluate the PES. Density-
functional theory (DFT) is one of the most common methods used for electronic

structure calculations [2]. DFT is based on extracting the physical properties of
a system from its electron density n(7), which is the spatial distribution function

of all electrons described by the N-electron wave function [3]. This can be done

because of the Hohenberg-Kohn theorems [4] [5]:

1. The ground state electron density is an injective function of the external
potential and number of electrons, both of which determine the ground
state of the wave function. In other words, there is a one-to-one mapping
of the electron density and the wave function.

2. The variational principle can also be applied to the ground state electron
density.

In this project, DFT calculations are used as a database for a machine
learning algorithm. However, there are many more electronic-based methods,
such as ab initio methods. These methods require only the atomic structure
and fundamental laws of physics [2]. They are quantum mechanical approaches
that do not need calibration against measured chemical parameters [6]. This
is usually achieved by using the Hartre-Fock method, which relies on using



a single Slater determinant as ansatz for the all-electron wave function, and
then exploiting the variational principle [3]. This, however, means that they
are limited to a small number of atoms and small time scales due to their
computational complexity.

Another example of electronic-based methods are semi-empirical methods.
These methods rely on approximations of the Schrédinger equation, like the
Hiickel method. Because of this, they are also quantum mechanical methods,
which consider the electronic structure of molecules. The approximations used
depend on reference to experimental (or ab initio) quantities to produce the
expected results [6].

1.2 Atomic-Based Methods

These methods are computationally simpler than electronic structure methods,
as they ignore quantum mechanics calculations. Because of this, simulations
at larger sizes and time scales are possible. In most atomic-based methods the
motion of atoms is governed by Newtonian mechanics. Forces acting on the
atoms are calculated using a force field, with which the PES is approximated.
The force field can be expressed as a many-body expansion:

N N N
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where V,,p is the n-body interaction, r; is the atomic coordinate, and r;;
are the distances between atoms ¢ and j. There exist many classical interaction
models to describe the n-body interactions. The most basic interaction to define
a force field is the 2-body interaction. The most common 2-body interaction
is the Lennard-Jones potential, which is capable of modelling attractive and

repulsive interactions. It is commonly defined as [7]:

ot | ()"~ (7))

where 7;; is again the distance between atoms i and j, € is the depth of
the potential well, and ¢ is the distance at which the potential energy is zero.
The € and o parameters can be adjusted to approximate different atomic species.
Another example of an n-body interaction is the embedded-atom method (EAM)
[8], which is widely used for modelling metals. In EAM, the metal is modelled as
positively charged ions ’embedded’ in a local electron density. Hence, the energy
of the system is derived from an embedding energy and the ion core repulsion
[9]. EAM approximates the local electronic density from the superposition of
the atomic densities of surrounding atoms. Therefore, the total energy is given
by:

B = 3" Fioni) + 3 3 8(ry) Q
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where F;(pp,;) is the embedding function, ®(r;;) is the short-range pair po-
tential, r;; is the distance between atoms ¢ and j, and pp; is the total host
electron density at atom 4. In this project, EAM calculations are used for com-
parison with classical interaction models.

1.3 Machine Learning Interaction Potentials

These methods are relatively new, and make use of machine learning algorithms.
The main differences between classical and machine learning interaction poten-
tial (MLIP) approaches are the accuracy and flexibility possible with MLIPs.
The mathematical form of MLIPs is more complex than most classical poten-
tials, usually with hundreds of parameters. This allows MLIPs to better ap-
proximate the PES. This originality of the MLIP approach allows for bridging
the gap between electronic and classical force field models and for performing
large scale simulations with the accuracy of quantum based models.

The effectiveness of this methods has been proved on a variety of systems
[10], [11], [12]. There are different methods for constructing MLIPs available,
such as neural network potentials [13], kernel based potentials [14], gaussian
approximation potentials [15], among others. In this project, a type of neu-
ral network potential is used, denominated high dimensional neural network
potential [16].

1.3.1 Descriptors

A neural network (NN) takes as input a vector of numbers. Therefore, the
atomic structure of a system must be broken down before being used as input
for the NN. The descriptors are the functions G whose job is to calculate the
structural input for the neural network. If the cartesian position of the atoms is
simply given as input, then the output will not be invariant under translation
and rotation of the system. However, these properties are expected from a MLIP
for it to be useful for the simulation of arbitrary system configurations. Ideally,
the descriptors would produce values in a one-to-one correspondence with the
atomic structure [1]. To tackle this problem, atom centered symmetry functions
were proposed by Behler [17]. In this project, two atom centered symmetry
functions are used, defined as:

G = e ) ()
JFi

GY =217C 3" (14 Acosbip)® e 1T £ () fo(rig)  (5)
GokAi
j<k
where G? is a radial symmetry function, GY is an angular symmetry function,
r;; represents the radial distance between atoms ¢ and j, n is the width of the
gaussian functions, 74 is the shift in the position of the gaussian function, { is



the angular resolution, A = +1 defines the position of the extrema of the cosine
function, 6, is the angle between three atoms and f, is the cutoff function. For
this project a polynomial and a cosine cutoff function were investigated, which
are defined as:

f(z) = ((15 — 6x)z — 10)z® + 1 (6)
(&) = 5 (cos () + 1) 7

_ ) f(z), forr <r.where z:= "
Jelr) = {0 for r > 7. (®)

where 7. is the cutoff radius. All of these parameters need to be chosen by
the user. For this project, a cutoff radius of r. = 6.0 A was chosen. A list of
the other parameters can be found in table [I} and the value of r, is studied in
the results section.

1.3.2 High Dimensional Neural Network Potential

Artificial Neural Networks (ANN) take inspiration from biology, as they are
designed like a network of neurons in a brain. ANNs are networks formed by
a large amount of simple and highly interconnected processing units known as
neurons [18]. Neurons are grouped in layers within the network, and each neuron
is connected to all the neurons in the next layer. The connections between
neurons are described by weights and biases. An ANN can acquire knowledge
through a learning process, generally adjusting the weights and biases in order
to minimize an error function. High dimensional neural network potentials
(HDNNPs) are a type of neural network potential (NNP) proposed by Behler
and Parrinello [19]. This type of potential makes use of an atomic neural network
as building block for a higher dimensional neural network. A diagram of a basic
atomic neural network can be seen in fig This basic network consists in
one input layer receiving the atomic structure as input, one hidden layer for
computations (it can be more than one), and an output layer consisting of one
neuron which value provides the atomic energy for atom . A network like this
one (with one hidden layer) can be written down as a mathematical expression:

N2 Nl
Ei = f2 |wg, + ijz'lf; <w(1)j + Z wijG§L> (9)
j=1

p=1

where wfj is the weight of the connection between neuron j in layer k and
neuron ¢ in layer k — 1, ng is a bias, V7 is the number of neurons in the input
layer, Ny is the number of neurons in the hidden layer, and f¥ is the activation
function for layer k. The atomic force can also be computed by calculating the
derivative of this expression.
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Figure 1: Diagram of an atomic neural network [19].
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Figure 2: Diagram of a high dimensional neural network. R{' represents the
cartesian coordinates of atom ¢, which are used to compute the symmetry func-
tion values GY' used as input for the subnets S; [19].

A high dimensional network is then constructed using as building blocks
atomic networks for each atom in the system, represented as the subnet S;.
The high dimensional network can be seen in fig HDNNPs are produced
using this type of network. They are characterized by the use of many-body
atom-centered symmetry functions and a set of atomic NNs which take the
descriptor as an input, and produce the atomic energy as an output [16]. The
goal of the high dimensional network is to represent the total energy of the
system as a sum of atomic energy contributions as described by:

Natu’ms

Z E; (10)

In this project, the N2P2 software [20] was used to produce MLIPs for gold
systems. The software follows the NN architecture presented previously to pro-
duce HDNNPs.



1.3.3 Training

The output produced by the NN previously described is computed using the
weights of the connections. The training process consists in improving the out-
put of the NN with respect to a reference value by adjusting the weights present
in eq[J} The reference values are obtained from a database of calculations made
using a different method. In this project, a database of DFT calculations for
different gold systems was used. The DFT calculations provide values for the
energy of the whole system, as well as the force vectors acting on each indi-
vidual atom (3 force values per atom). This means that the database contains
one energy value per system and 3N, force values per system, where N, is the
number of atoms in the system. The database is then divided into train and test
sets. The train set will be used as learning material for the algorithm, and the
parameters will be adjusted to better reproduce the values in this set. The test
set is not used in the training process, and is used to measure the capacity of the
NN to interpolate systems not included in the training set. For all potentials
used in this project, 10% of the database was selected for the test set, while the
rest formed part of the train set.

The state of the neural network is described by a vector w containing the
weight parameters. The training patterns are represented by the vector x,,
where the index a enumerates the training patterns, and y™f is the vector of
reference output values corresponding to the input vector x,. The prediction of
the neural network is represented by the vector y(t). The the error vector &(t)
is then calculated as:

w1 yiei(ma)
wa Y5% (xa)

w= Y= . (11)
Wn, yisf(wa)

y(t) = : &) =y —y(t). (12)
Ym(w(t), x,)

With the error vector, a cost function can be defined as I' = Y, €7(£)€(¢).
The root mean square error (RMSE) is also defined as:

M
1
RMSE = \| 223 (et — ya)? (13)

a=1

where M is the number of training patterns. These two functions describe
the disagreement of the NN predictions with respect to the reference values.
During the training process both of these functions are minimized. Obtaining
a good NN model requires the parametrization of the weights in eq[d] For that



purpose, numerous non-linear optimization methods can be employed including
stochastic gradient descent (SGD) [21] and stochastic optimization [22], among
others [23]. In this project, the extended Kalman filter (EKF) method was used,
as it was demonstrated in ref [24] to have better convergence in this particular
context.

The Kalman filter algorithm is an optimization technique that optimizes
the estimate of the state of a linear dynamical system given observables from
a history of data points [24]. It recursively calculates a better estimate of the
weight parameters by using the error vector. Each estimate calculation is called
an update. In the database there are both energy and force reference values,
which can be used to calculate the error vector. Therefore, a weights update can
be computed using energy or force values, in which case it could be an energy
update or a force update. Each epoch of the training process consists of several
updates.

It was shown by Blank and Brown [25] that the efficiency of the Kalman
filter can be improved by selectively using information from the database. This
idea relies on the assumption that patterns that are well reproduced by the NN
can be skipped during an epoch. The relative error of a pattern with respect to
the RMSE is used as a selection criteria.

1.4 Nanoparticles

Magnetic nanoparticles can have many biomedical applications, such as medi-
cal imaging, drug delivery, cancer therapy, etc [26]. However, common magnetic
materials are not biologically compatible and oxidize with ease. An approach
to tackle this problem is to cover magnetic nanoparticles with an inert and bi-
ologically compatible material. Gold is one of the materials being investigated
for this purpose. Gold is biologically compatible, chemically inert and func-
tions with several enzymes [27]. The synthesis of nanoparticles using gold and
other magnetic materials is still improving and there are many questions to
answer. Because of this, it is of great interest to perform simulations on these
nanoparticles, for which machine learning methods could be of great help.

The goal of this internship project is to study the capacity of machine
learning potentials to approximate gold PESs. The produced potentials will
be compared with the classical EAM method, as well as with the DFT refer-
ence method. Furthermore, the effect of setup parameters on the calculation of
physical properties will be studied. Finally, the transferability of the potential
will be tested.
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(a) (b)
(c) (d)

Figure 3: Figures (a) and (b) show the FCC and BCC bulk structures of gold,
while figures (c¢) and (d) show the (100) and (111) surface structures of gold.

2 Methodology

2.1 Database

For this project, DFT calculations were used as a database for the training
of the neural network. This database contained force and energy values for
different gold systems. Included in the database were 30 (100) and 30 (111)
surface structures as well as 25 bulk structures in BCC configuration, and 20
bulk structures in FCC configuration. The database and the values used for
comparison come from ref .

2.2 Training

n2p2 was the neural network framework used during this project. The
layout of the network consisted of two hidden layers with 25 neurons each. The
activation function used for the neurons in the hidden layers was a hyperbolic
tangent, and a linear function for the output neurons. In order to check for
the consistency of the NN potentials, 5 different potentials were created using
different random seeds. The data points and error bars presented in this report
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are obtained from the average and standard deviation of the calculations made
using the different random seeds. 26 symmetry functions were defined using the
parameters from ref [29], presented in table|l} The training was then performed
for 100 epochs. Each epoch consisted of approximately 1000 updates (actual
quantity depends on random numbers).

G* 7 G? 7 A G 7 A<
1 0006428 || 1T | 0.000357 | 1 | 2 || 10 | 0.045357 | -1 | 3
2 1 0.012856 || 2 | 0.005357 | 1 | 2 | 11 | 0.050357 | -1 | 3
3 1 0.010357 |3 | 0.010357 | L |2 12 | 0.055357 | -1 | 3
4 | 0.051424 || 4 | 0015357 | -1 | 2| 13 | 060357 |1 | 4
5 ] 0.102848 |[5 | 0.020357 | -1 | 2 |[ 14 | 0.65357 |1 |4
6 | 0.205696 || 6 | 0.025357 | -1 | 2 | 15 | 0.70357 |1 | 4
7 | 0411392 |[ 7 | 0.030357 | L | 3| 16 | 0.075357 | -1 | 4
8 | 0822784 [ 8 | 0.035357 | L |3 17 | 0.080357 | -1 | 4

9 | 0.040357 | 1 | 3 || 18 | 0.085357 | -1 | 4

Table 1: Symmetry function parameters [29].

2.3 Physical Properties

Once the NNPs were obtained, they were used to compute physical properties
of gold. The error of this computations with respect to the DFT calculations
was used to monitor the accuracy of the system.

2.3.1 Mechanical properties

An energy and force minimization was performed on the FCC bulk in order
to obtain the lattice spacing of the system. Omnce the system was minimized,
the elastic properties were obtained by deforming the simulation box and mea-
suring the change in the stress tensor. This, in turn, allowed to calculate the
components of the elastic stiffness tensor. For a cubic system such as gold, the
stiffness tensor can be described by 3 free parameters. With the components of
the stiffness tensor, the bulk modulus could then be calculated using:

Ci1 Ci2 Cig 0 0 0
Ci2 C11 Cyo 0 0 0
_|Ci2 Ci2 Cn 0 0 0 . C11+2Ch2
= 0 0 0 Cys 0 0 ’ B = 3 (14)

0 0 0 0 Cyu 0
0 0 0 0 0 Cy

In practice, the input script as given in LAMMPS was employed, and the
methodology is further described in ref [30].
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2.3.2 Surface energy

In order to calculate the surface energy, minimization was performed on surface
slabs (100) and (111). From the minimization, the energy of the slab system
could be obtained. Similarly for the bulk system, which was then divided by
the number of atoms in the bulk system to obtain the energy per atom. The
values were then used together with the area A of the surface to calculate the
surface energy using the equation:

_ 1 (
Y
where N is the number of atoms in the slab system, Eﬁab is the energy of the
slab system, Ej,,1k is the energy per atom of the bulk system, and A is the area
spanned by the slab system calculated using the dimensions of the simulation
box.

Elab — NEBouic) - (15)
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Figure 4: Error of different physical properties with respect to reference DFT
values.

3 Results and Discussion

3.1 Comparison with EAM potential

One of the main goals of MLIPs is to improve on the accuracy of classical
potentials. For this reason, calculations of physical properties were performed
using the HDNNP and EAM potentials. The results are shown in fig[d Even
though EAM is a method designed for modelling metals, it can be observed that
the values calculated with HDNNP have a much smaller error for all properties.
This is as expected, and it is partly due to the choice of setup parameters used
for the HDNNP, which will be discussed in the next subsections.

3.2 Cutoff function

To study the effects of the cutoff function on the accuracy of the HDNNP,
two cutoff functions were tested. These are the polynomial and cosine cutoff
functions as defined in equations [6] and [7]] The potentials with both cutoff
functions were trained using only force updates (i.e. energy values were ignored),
and a value of 7y = 0.0 A was chosen. The error of the physical properties
with respect to DFT values was plotted and can be seen in fig [5l Both cutoff
functions work good in this case, and in the case of elastic properties it is not
possible to choose a favorite one. However, for surface energies the polynomial
cutoff function approximates them better than the cosine cutoff function. For
this reason, the rest of the potentials in this report are generated using the

14
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Figure 5: Error of different physical properties with respect to reference DFT
values for the cosine (COS) and polynomial (POLY) cutoff functions.

polynomial cutoff function.

3.3 Dependence on r;

Next, the effect of the symmetry function parameter r; on test force RMSE and
physical properties of the system was studied. In eq[4] the ry parameter repre-
sents the shift of the gaussian functions that compose the symmetry function.
The effect of using positive and negative r5 values on the symmetry function can
be seen in fig [6] Different potentials were trained using r, values in the range
[~7¢,7¢], where r. = 6.0 A is the cutoff radius. The potentials were trained
using only force updates for each epoch. The results are shown in fig [

It can be seen that the error in physical properties becomes erratic in the
region where r, > 2.0 A. The test force RMSE is shown in fig It can be
observed that the error in surface energy seems to be correlated to the test force
RMSE. Fig EI shows the G2 symmetry function for different r, values. The test
force RMSE seems to have a more stable behaviour when the symmetry function
has a smaller slope, i.e. negative r, values. The region between ry = —2.0 A
and 7, = 1.0 A was further investigated using 10 random seeds instead of 5 for
greater precision, shown in fig

In this range, no conclusion can be made about a dependence of physical
properties on rs. It is also observed that the test force RMSE remains more
or less constant throughout the range [—2,0]. For this reason, an arbitrary
intermediary value of 7, — 0.5 A was chosen to be used for the rest of the

15
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potentials in this report.

3.4 Training with energies

Next, the effect of the number of energy updates per training epoch was studied.
The number of 1000 weight updates per epoch was kept in order to have similar
training times. However, each of the 1000 weight updates can be based on
an energy or a force value from the database, they can be either an energy or
force update. n2p2 allows for granular control over the number of energy and
force updates per epoch. Therefore, a force ratio can be defined as ratio =
updates force /updatesiorqr, where the number of total updates is approximately
1000. Potentials were then trained using different force ratios ranging from 0
to 1. The rest of the updates will be energy updates, therefore the force and
energy ratio add up to 1. The results can be seen in fig [0

It can be seen that the error in surface energy significantly decreases for
both (100) and (111) surfaces, getting very close to 0%. The machine learning
potential clearly benefits from training with both force and energy updates.
However, a training with only force updates still produces reasonable results,
while a training with only energy updates has a large standard deviation. This
can be due to the information made available by energy and force values. The
database contains a total of 45240 force values, but only 105 energy values.
For force ratios lower than 0.9 (energy ratios higher than 0.1) more than 100
energy updates will be used. As the number of energy values is limited, this
means that force ratios lower than 0.9 will reuse energy values during each

16
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Figure 7: The test force RMSE is shown in plot (a). Plot (b) and (c¢) show
the disagreement of the calculated physical properties with respect to the DFT
values from ref . It can be noticed that the plot of surface energies roughly
resembles the plot of test force RMSE.

epoch. In principle, this is damaging to the training process, as it limits the
novel information made available at each epoch.

Next, the effect of force ratio on mechanical properties was studied. The
properties compared were the bulk modulus, lattice spacing and Cy; and Cio
components of the elastic stiffness tensor. The results are shown in fig
Out of all properties, the lattice spacing is the property best approximated by
the machine learning potential. The bulk modulus benefits from a training
using only forces, but the error is also considerably small when using forces and
energies. For C7; and C15 no conclusion can be made. When the error for Cy;
or (12 decreases, the error for the other increases.

No conclusion can be made for an optimal force ratio value. The force ratio
of 0.9 includes energy values without repeating them many times for the same
epoch. This means that all energy values are included and there is more available
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Figure 8: Plot (a) shows the test force RMSE as a function of rs in the same
range. Error of the calculated physical properties as a function of rg in the
range [—2,1] is shown in plot (b) and (c). No particular trend or optimal value
can be identified within this range.

place for new force values to be included in each epoch. It is also recommended
in ref to use all energy values for training. Because of this, a ratio of 0.9
was used for the following potentials.

3.5 Transferability

In order to test for the capability of the machine learning potential to be used
in more general applications, it is useful to study the effects when the database
is limited. To analyze the transferability of the potential, the surface structures
were removed from the database, and then the surface energies were calculated.
The results for a complete database, a database without (100) surface structures,
a database without (111) surface structures, and a database without any surface
structures are shown in fig

It can be seen that the training with the complete database has the smallest
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Figure 9: In plot (a) the error of the surface energy is shown as a function

of force training ratio in logarithmic scale. The ratio

is defined as ratio =

updates force /updatesiow, therefore a value of 0 means that all updates are
energy updates, and a value of 1 means that all updates are force updates. The
test energy and test force RMSE are shown in logarithmic scale in plot (b).
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Figure 10: Error of different mechanical properties.

error percentage. The error in surface energy appears to be small when no
surface structure is included in the database. However, the standard deviation
is too high, and it could no longer be considered a useful approximation of
a DFT calculation. When only one of the surface types is removed from the
database, the error in energy of that surface type increases. However, the error
in energy of the remaining surface type stays relatively similar. This means that
as long as there is a surface type represented in the database, the other type
can be successfully extrapolated.
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Figure 11: Error in surface energies for NN potentials trained on different
databases. The complete training used all of the available database. For the
no 100 training all (100) surface structures were removed from the database,
equivalently for the no 111 training. Lastly, the no surface training used a
database in which all surface structures were removed.

4 Conclusion and Outlook

Throughout this project, the capacity of machine learning potentials to approx-
imate DFT calculations was assessed. In order to do this, physical properties
were calculated with the machine learning potential and compared to the refer-
ence values from DFT calculations .

It is clearly proved that the HDNNP has a higher accuracy compared to
the classical EAM potential. The error in physical properties was reduced when
using the HDNNP, showing that HDNNP is a good multi-scale method to bridge
the electronic and atomic scales.

Then, a study on the setup parameters of the HDNNP was performed. First,
a comparison was made between two cutoff functions. It was found that both
cutoff functions produce good results, but the surface energies are better ap-
proximated by the polynomial cutoff function.

The dependence of accuracy on 7y was studied next. It was found that
negative ry values provide reliable test force RMSE, even when studying more
in detail the range [—2, 1]. Tt was then found that the surface energy plot slightly
resembles the test force RMSE plot. The test force RMSE provides an indication
on what the standard deviation of the surface energy will be. However, a good
test force RMSE does not imply a small error in surface energies. This was

21



further illustrated in the range [—2,1]. No clear trend or optimal value could
be identified for the error in surface energies. These results show that there is a
range of reasonable values for 7, in the range of [—2, 1]. And, it can be said that,
in general, high r, values produce higher test force RMSE and higher surface
energy errors.

Then, the effect of energy and force training ratios on the potential was
studied. As expected, it was found that the test force and test energy RMSE
decrease as their respective ratio increased. However, when the force ratio is
equal to 0.0 (only energy updates), the test energy RMSE was higher than for
other ratios. This can be explained by the limitation of the energy data to
describe the system. In total there were 105 energy values, one for each system
in the database. This is minuscule compared to the 45240 force values. Energy
values help the machine learning potential approximate the energy of the system,
but they do not encode information on each atom. Therefore, force values are
highly important. It was found that surface energy calculations clearly benefit
from having access to both types of information. This is illustrated in fig
where it can be seen that the error in surface energy decreases by a factor of 10
when the force ratio changes from 1.0 to 0.9. However, there is no clear decrease
in the error as a function of force ratio for the rest of the plot. Instead, the
force ratio has an effect on the standard deviation. For mechanical properties it
is even more difficult to notice a trend. However, in the case of bulk modulus,
there seems to be a better agreement for higher force ratios.

One of the most useful qualities of a machine learning potential is trans-
ferability. A database is computationally expensive to make, and therefore the
number of systems included is limited. In this project, the transferability of the
machine learning potential was tested by removing structures from the database,
and observing the effect on surface energy. It was found that the machine learn-
ing potential is capable of correctly extrapolating a surface structure that is not
included in the database. However, when all surfaces are removed the standard
deviation increases too much for it to be considered a good approximation.

From these results, it is concluded that HDNNPs are capable of correctly
approximating DFT calculations for a gold system. It was found that in spite
of the flexibility of the algorithm the results still rely heavily on the chosen
parameters. This may be problematic in some cases, and shows that machine
learning is far from being a one-size-fits-all solution. In the future, this machine
learning potential will be tested on more dynamic simulations to further validate
against electronic-based methods.
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