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Abstract

Machine learning (ML) methods have become more relevant in materials sci-
ence over the last decade. They are now well recognized as effective methods
for approximating extremely complex functions. Machine learning interac-
tion potentials (MLIP) offer computation speeds close to empirical poten-
tials, while having an accuracy close to the method used in training. In
this project, an active learning approach was tested for the extension of gold
databases with BCC and surface structures. The active learning approach
used was Query by Committee (QbC), implemented in the lasp2 interface.
The machine learning framework n2p2 was used for the creation of potentials
and Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
was used for exploring the phase space with NVT simulations. For selected
structures, the vasp software was used to compute forces and energy using
Density-Functional Theory (DFT), which where then added to the database.
Potentials were then trained on-the-fly using lasp2 to measure the disagree-
ment between the committee and then deciding when a certain structure
should be added to the database. LAMMPS was then used to calculate sur-
face energies for (100) and (111) structures, as well as BCC bulk modulus.
These physical properties served as control parameters to test whether the
potential was improving with on-the-fly training. It was found that the lasp2
method can improve a potential by doing on-the-fly training, however it is
not always the case, as seen with BCC structures. For the (100) and (111)
surfaces we were able to quickly recover the values predicted with a manually
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created database. In the case of BCC, no clear improvement could be seen,
and the error in bulk modulus seemed to behave arbitrarily, even when using
the complete manually created database as a starting point.

Introduction

Material modelling at the atomic level is concerned with the calculation of the
potential energy surface (PES). The PES is a multidimensional function that
relates the energy of a molecule (or collection of molecules) and its geometry
[1]. In materials science there are two main approaches to approximating
the PES. On the one hand, electron-based methods are used for calculations
at the electronic scales, they rely on quantum mechanics and are the most
accurate models. However, they are also computationally expensive. On the
other hand, force field methods are much faster, allowing for the simulation
of larger systems, even reaching biological applications. But, they rely on
empirical models, thus leading to a decrease in accuracy when compared to
electron-based methods. In this project, a software for performing on-the-fly
training of Machine Learning Interaction Potentials (MLIP) is tested.

Machine Learning Interaction Potentials

These are methods that aim to approach the accuracy of electronic-based
methods, while having computation times similar to the atomic-based meth-
ods. This is done by using machine learning algorithms, such as neural
network potentials [2], kernel based potentials [3], gaussian approximation
potentials [4], among others.

High Dimensional Neural Network Potential

A High Dimensional Neural Network Potential (HDNNP) is a type of neural
network potential (NNP) proposed by Behler and Parrinello [5]. It is created
using Neural Networks (NN), consisting of a large amount of simple and
highly interconnected processing units known as neurons [6]. Neurons are
grouped in layers within the network, and each neuron is connected to all the
neurons in the next layer. The connections between neurons are described
by weights and biases. The HDNNP is constructed using atomic neural
networks as building blocks, represented as the subnet Si in fig 1.
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Figure 1: Diagram of a high dimensional neural network. Rα
i represents the

cartesian coordinates of atom i, which are used to compute the symmetry
function values Gµ

i used as input for the subnets Si [5].

This complex network receives as input the cartesian coordinates of the
atoms in the system. Symmetry functions are then computed, which are used
to describe the system in a translational and rotational invariant manner [7].
The values of the symmetry functions are then used as input for the subnets
Si, giving as output the energy of the atom. The total energy of the system
is then computed by a sum of the atomic energies, written mathematically
as:
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where wk
ij is the weight of the connection between neuron j in layer k and

neuron i in layer k − 1, wk
0j is a bias, N1 is the number of neurons in the

input layer, N2 is the number of neurons in the hidden layer, and fk
a is the

activation function for layer k. The atomic force can also be computed by
calculating the derivative of this expression.

Query by Committee

Query by Committee (QbC) is an active learning strategy. In QbC a com-
mittee is formed, which consists of multiple machine learning models trained
independently. This committee can then be used to compute an average of
the predictions from its members, giving an improved accuracy compared to
the individual predictions. Additionally, the disagreement of the members
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in the committee provides access to an estimate of the generalization error.
QbC consists in systematically improving the model by adding unlabeled
data to the training set whose committee disagreement is high [8], [9].

Methodology

In this project a QbC method is tested for extending the training database of
a HDNNP. The implementation of HDNNP used is n2p2 [10], which is used
to approximate forces computed using Density Functional Theory (DFT)
with the vasp software [11], [12], [13]. To perform molecular dynamics the
LAMMPS software was used [14]. For the implementation of the on-the-
fly training technique we developed the lasp2 (LAMMPS-vasp-n2p2) Python
code [15].

Database

For our project, the purpose of using on-the-fly training is to automatically
extend an existing database in order to train a better model. To be able
to use our lasp2 method however, we need to have a starting database. A
starting database can be created using a classical method that is known to
be sufficient. With the auxiliary method we can explore the space of atomic
structures. After the exploration, some structures are selected manually and
the forces are computed using a more accurate method so that they may
be added to the database. The database used in this project was generated
by performing DFT calculations on structures obtained using an Embedded
Atom Model (EAM) potential. This database consisted of 20 FCC, 25 BCC,
30 (100) surface, and 30 (111) surface structures of gold, shown in fig 2.

Simulation steps

The purpose of our lasp2 method is to automate the selection and calculation
of structures for the database. We also eliminate the need for an auxiliary
classical method to explore the phase space. This is achieved by training
different models with the initial database, which will be used to create a
committee. One of the models is then used to perform an NVT simulation
using LAMMPS.
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(a) (b)

(c) (d)

Figure 2: Figures (a) and (b) show the FCC and BCC bulk structures of
gold, while figures (c) and (d) show the (100) and (111) surface structures of
gold.

Since the initial database is expected to be limited, the disagreement of
the committee is checked throughout the NVT simulation. If the disagree-
ment is too high (greater than a user-defined threshold) for a given structure,
it is likely that the model is not good for this type of structure. Therefore,
the model would benefit from adding this structure to the database. Once
the flag is activated (disagreement greater than threshold), the NVT simula-
tion is stopped, and a DFT calculation is performed on the current structure.
Then, the structure is added to the database and the models are retrained,
finishing a lasp2 iteration. Afterwards, the NVT simulation is continued until
the flag is activated again.

Disagreement

As discussed previously, the disagreement of the committee can be used as an
indication for extrapolation (computing structures that are different than the
training database). In our project we decided to use the standard deviation
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as a measure of disagreement or dispersion of the predictions. This measure
for the disagreement was chosen as it has been tested for similar applications
[16]. In our case, it is implemented with a slight variation, as the maximum
standard deviation is chosen as the value for disagreement. The disagreement
γ is computed as:

σFα =

√∑N
i=1(Fiα − Fµα)

2

N
,

γ = max(σFα)

(2)

where Fiα is the force predicted by the i-th member of the committee for
the atom α. Fµα is the average of the committee predictions for atom α. N
is the number of members in the committee. Therefore, σFα is the standard
deviation of the committee predictions for atom α. Lastly, the disagreement
measurement is equal to the maximum standard deviation.

An example of the dispersion throughout the NVT simulation can be seen
in fig 3. Here, the disconnected lines represent different iterations of the lasp2
method. Once the dispersion goes over the threshold, training is performed
and the NVT simulation restarts from the previous step.

Results

In order to test our method we selected subsets of the manually created
database, and tried to recover their physical properties.

Extension of database to surface structures

For the first test, the database was limited to only 20 FCC structures. This
subset was used to train the initial models.

Surface structure (100)

We performed the lasp2 method with an NVT simulation of a (100) surface
structure at 400K. Each time the training flag is activated a lasp2 iteration
occurs. At each lasp2 iteration, the database is increased by one (100) struc-
ture. For each iteration of the database, the surface energies for (100) and
(111) were measured. The results are shown in fig 4 including the surface
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Figure 3: Dispersion for the different lasp2 iterations. The x axis represents
the NVT simulation steps, and different plot lines represent different lasp2
iterations (red-oldest, blue-newest).

energy of the complete database as a straight dashed line. It can be seen
that the error in surface energy compared to the DFT value is very high at
iteration 0, when the database does not include any surface structure. Then,
the error rapidly decreases for both (100) and (111) surfaces, implying that
the (111) surface energy also benefits from adding (100) structures to the
database. In the case of (100) surface energy, it manages to reach the orig-
inal predictions of the complete database. However, this is not the case for
(111) surface energy.

Surface structure (111)

The same process was then repeated using a (111) surface structure for the
NVT simulation at 400K, and the results are shown in fig 5. This time, a
(111) structure is added to the database for each lasp2 iteration. As in the
previous case, the errors are high when no surface structure is included in the
database. This time, however, the (111) surface energy reaches the original
predictions from the complete database. This is just partially the case for
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Figure 4: Error in surface energy for (100) and (111) surface structures with
respect to the DFT value. The lasp2 simulation process was performed with
an NVT simulation of a (100) surface structure. The value obtained using
the original manually created database is shown as a dashed line with an
error bar.

the (100) surface energy. The decrease in error is also fast, but slightly slower
than in the (100) case.

Extension of database to BCC structures

Then, the same test was done for extending a limited database to BCC
structures. This time, the bulk modulus of the BCC structure was used as a
control variable. Different tests were performed with different subsets of the
database, shown in fig 6. It is seen that for the BCC case there does not seem
to be a decrease of the error with respect to DFT as a function of number
of lasp2 iterations. Rather, the behaviour of the bulk modulus appears to
be arbitrary, with few iterations approaching the original prediction from
the complete database. However, it must be noted that the error of the
complete database is still considerable, at 22.64%±1.42%. This might imply
that the HDNNP in its current configuration is not sufficient for correctly
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Figure 5: Error in surface energy for (100) and (111) surface structures with
respect to the DFT value. The lasp2 simulation process was performed with
an NVT simulation of a (111) surface structure. The value obtained using
the original manually created database is shown as a dashed line with an
error bar.

approximating the physical properties of BCC gold.
As an extra test, the lasp2 method was performed using the complete

database for the initial model. The result is shown fig 7, where a similar
behavior is observed. This further supports the hypothesis that the HDNNP
struggles to compute physical properties of BCC gold.

Conclusion

This project serves as a proof of concept for the lasp2 method. However,
the tests are not sufficient to assert its functionality. It is clearly shown that
the calculation of physical properties of surface structures can be improved
with this method. The error in surface energy shown in figs 4 and 5 quickly
decreases, and reaches the predictions of the complete database just after a
few iterations. In the case of BCC, however, the results are inconclusive, and
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(a) (b)

(c) (d)

Figure 6: Error in bulk modulus for BCC structures with respect to the DFT
value. The lasp2 simulation process was performed with an NVT simulation
of a BCC structure. The value obtained using the original manually created
database is shown as a dashed line with an error bar.

even when using larger subsets of the database, it was not possible to decrease
the error in bulk modulus. This might be due to a limitation in the HDNNP
model currently being used. However, in this early development stage, it is
not possible to rule out technical problems with the code or the choice of
parameters. Future work can be directed to testing the lasp2 method for dif-
ferent systems, and using different physical properties as control parameters.
This could help rule out technical problems with the code.
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Figure 7: Error in bulk modulus for BCC structures with respect to the DFT
value. The lasp2 simulation process was performed with an NVT simulation
of a BCC structure. The value obtained using the original manually created
database is shown as a dashed line with an error bar.
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[3] Christoph Scherer, René Scheid, Denis Andrienko, and Tristan Bereau.
“Kernel-Based Machine Learning for Efficient Simulations of Molecu-

11

https://doi.org/10.1007/978-3-319-30916-3_2
https://doi.org/10.1007/978-3-319-30916-3_2
https://doi.org/10.1007/978-3-319-30916-3_2
https://doi.org/10.1007/978-3-319-30916-3_2
https://doi.org/10.1007/978-3-319-44677-6_56


lar Liquids”. In: Journal of Chemical Theory and Computation 16.5
(2020), pp. 3194–3204. url: https://doi.org/10.1021/acs.jctc.
9b01256.
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